{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# The Voigt notation of strain and elastic modulus\n", "\n", "The `qha-cij` package provide the `qha.cij.voigt` module to facilitate converison between standard ($c_{ijkl}$, $e_{ij}$, where $i,j,k,l=1,2,3$) and [Voigt notation](https://en.wikipedia.org/wiki/Voigt_notation) ($c_{ij}$, $e_{i}$, where $i,j,k,l=1,...,6$) of symmetric metric tensor. With the help of this module, users could easily use both types of notations to work with strains and modulus.\n", "\n", "The class `cij.util.voigt.ModulusRepresentation` (or `C_`) and `cij.util.voigt.StrainRepresentation` (or `S_`) are used to represent strain and modulus keys. But to create these values, user should use the lowercase `c_` and `s_` from `cij.util`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n" ] } ], "source": [ "from cij.util import c_, e_\n", "\n", "print(type(c_(11)))\n", "print(type(e_(1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `c_` and `s_` allow different types of input, including standard and Voigt notations, as `str` and `int`. And best yet, they can be used to do compairson, to check whether they represent same value." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "23(2233)\n", "23(2233)\n", "23(2233)\n", "23(2233)\n", "56(1312)\n", "45(2313)\n", "44(2323)\n", "True\n", "True\n", "False\n", "False\n" ] } ], "source": [ "print(c_(23))\n", "print(c_('23'))\n", "print(c_(2233))\n", "print(c_('2233'))\n", "\n", "print(c_(56))\n", "print(c_(1323))\n", "print(c_('2323'))\n", "\n", "print(c_(11) == c_('1111'))\n", "print(e_('1') == e_('11'))\n", "print(e_('23') == e_(6))\n", "print(c_('66') == c_(3223))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By accessing the `.voigt` (or `.v`) and `.standard` (or `.s`) property, one could retrive the Voigt and standard notations in the tuple format." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(5, 5)\n", "(1, 3, 1, 3)\n", "(5, 5)\n", "(1, 3, 1, 3)\n" ] } ], "source": [ "print(c_(55).v)\n", "print(c_(55).s)\n", "print(c_(55).voigt)\n", "print(c_(55).standard)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One could also create elastic modulus key from its two repective strains" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "True\n" ] } ], "source": [ "from cij.util import C_\n", "\n", "print(c_(46) == C_.from_standard(*e_(4), *e_(6)))\n", "print(c_(46) == C_.from_voigt(e_(4).v, e_(6).v))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For elastic modulus, we also provide `.is_longitudinal`, `.is_off_diagonal`, and `.is_shear` to check what type of modulus it is." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n", "True\n", "False\n" ] } ], "source": [ "print(c_(11).is_shear)\n", "print(c_(55).is_shear)\n", "print(c_(55).is_longitudinal)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `.mulitplicity` property checks the multiplicity of $c_ij$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n", "4\n", "8\n" ] } ], "source": [ "print(c_(11).multiplicity)\n", "print(c_(55).multiplicity)\n", "print(c_(46).multiplicity)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }